

In Situ Stabilization and Solidification (ISS) The Optimized Benefits of Sodium Persulfate

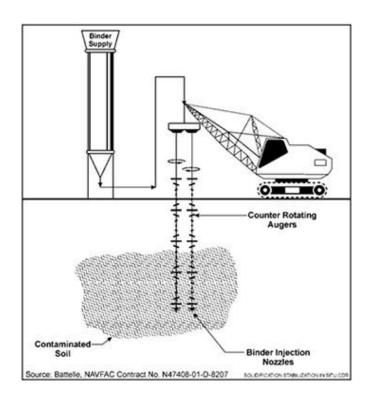
Scott Steffl, PeroxyChem LLC

Outline

- ISS-ISCO Technology Overview
- ISS-ISCO Case Studies

• Summary

In Situ Solidification-Stabilization


In Situ Solidification-Stabilization (ISS)

- Contaminant <u>immobilization or mass flux</u>
 <u>reduction</u>
- Decreases the <u>hydraulic conductivity</u> of soils
- <u>Compressive soil strength</u> influenced by type and dose of reagents
- Applied via soil mixing/blending

ISS is commonly used to <u>immobilize</u> highly contaminated petroleum hydrocarbon sites (MGP sites, etc.)

ISS

- Common applications:
 - 10-40% w/w binder addition
 - Ex: Portland cement
 - Proportional water added
 - A single binder is common

Common Objectives of ISS

- Reduced hydraulic conductivity
 - 2-3 orders of magnitude below native soils
 - 1 x 10⁻⁶ cm/sec
- Unconfined Compressive Strength (UCS)
 - "Workable" ~20-60 psi
 - Hardened
- Lower contaminant flux and leachate concentrations

Typical target range for "workable" soils ~20-60 psi

Compressive Strength						
	Unconfined Compressive Strength (UCS) Ranges					
Consistency	psi		kPa (KN/m²)			
	Low	High	Low	High		
Very soft	0	3	0	24		
Soft	3	7	24	48		
Medium	7	14	48	96		
Stiff	14	28	96	192		
Very Stiff	28	56	192	383		
Hard	>56		>383			

General Relationship between Soil Consistency and Unconfined

ISCO can help resolve ISS Challenges

ISS	ISCO/ISS
 No contaminant destruction 	 Contaminate destruction
 Disposal of contaminated soils 	 Reduced binder and water volume result in less disposal
 High carbon footprint 	 Lower carbon footprint (less binder)

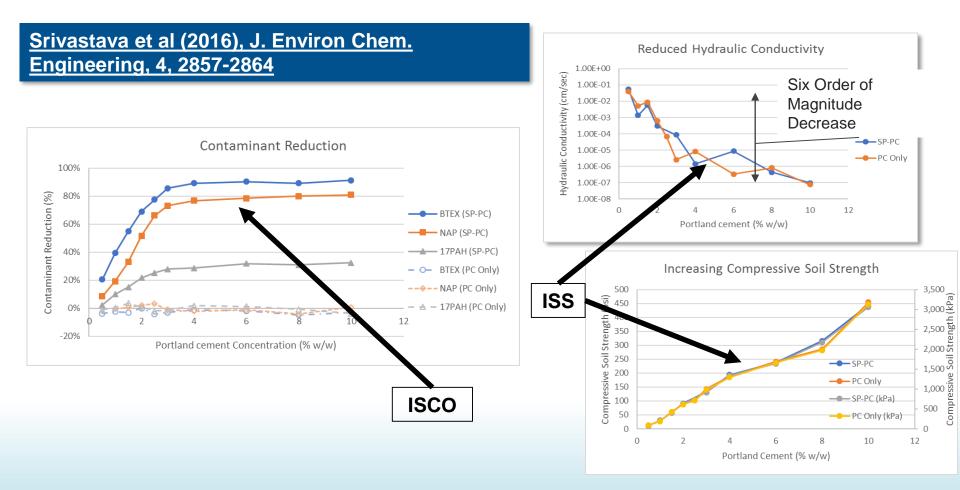
ISCO-ISS

- Binder plus Klozur[®] SP (sodium persulfate).
 - 1-10% Portland Cement
 - 0.5-5% Klozur SP
- Common ISS binder reagents can also create alkaline activated conditions for persulfate
- Typically less binder material is needed to achieve ISS goals when combined with sodium persulfate
 - Reduced handling and disposal of excess soils

Common ISS reagents

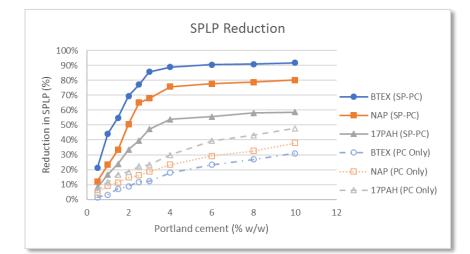
Portland cement (~65% CaO)

- Calcium hydroxide [Ca(OH)₂]
- Calcium oxide (CaO)
- Fly Ash (Class C & F)
- Blast furnace slag
- Lime kiln dust
- Cement kiln dust
- Pozzolans
- Bentonite


* PeroxyChem LLC ("PeroxyChem") is the owner of European Patents 1720802B and its foreign equivalents. The purchase of PeroxyChem's Klozur® persulfate includes with it, the grant of a limited license under the foregoing patent at no additional cost to the buyer.

ISS and ISCO

Srivastava et al (2016), J. Environ Chem. Engineering, 4, 2857-2864


- Highly contaminated soils (MGP residuals)
 - >36,900 mg/Kg TPH
 - ~6,800 mg/Kg BTEX
 - ~13,400 mg/Kg Naphthalene (Nap)
 - ~16,900 mg/Kg 17 PAHs (not including Nap)
- Portland Cement (PC) : Klozur SP ratio (2:1 w/w)
 - <u>CaO in PC facilitates alkaline persulfate activation</u>
- ISCO:
 - Persulfate loading underdosed for complete treatment of TPH
 - Preferential treatment of soluble contaminants

Combining ISS and ISCO

ISS Benefits: Leachate Concentrations

- Contaminant leachate reduction
 - Greater reduction in leachate concentrations with Persulfate and Portland cement than Portland cement only
 - ISCO preferentially reduced more soluble contaminants
 - Portland cement alone only preferentially reduced leachate concentrations of larger, less soluble compounds

SPLP (synthetic precipitation leaching procedure)

Srivastava et al (2016), J. Environ Chem. Engineering, 4, 2857-2864

Case Study: Søllerød Gasværk

- Former MGP Site Denmark
 - 3% Klozur SP
 - 8% Portland Cement/Slag
- ISS Goals:
 - UCS: 100% > 20 psi (150 kPa) after 80 days
 - Permeability:
 - Avg: 2.1 x 10⁻⁷ cm/sec
 - 100% of 26 samples ≤ 1 x 10⁻⁶ cm/sec

Compound	Baseline Concentration ¹ (mg/Kg)	Post Application Concentration (mg/Kg)	Reduction due to Treatment (%)			
Benzene	13 to 27	ND	>99			
Naphthalene	100 to 160	23	80-85			
Phenols	3	0.04	99			
TOC	500 to 800	23	85-90			
1. Based on conversion of contaminant mass estimates						

Nissen L. et al, (2019), "Full Scale ISS/ISCO soil mixing Søllerød Gasværk," Vintermøde 2019, Temadag om Soil Mixing som afværgemetode

Case Study: Bolzano, Italy

- Treatment volume:
 - 3,500 m³
- Depth:
 - 3 to 8 m bgs
- 556 columns
- Reagents
 - 0.7 1% Klozur SP
 - 4 to 8 percent Portland cement
- Treatment Goals:
 - Contaminant reduction
 - Waste minimization
 - Stable Compressive Soil Strength

Bolzano Results

ISS Remedial Goals:

– UCS:

- 215 kPa to 470 kPa
- ~30 psi to ~70 psi
- Permeability:
 - 2.8 x 10⁻⁶ cm/sec to 7.3 x 10⁻⁷ cm/sec

Less than 15% bulking of Soils

• ISCO Remedial Goals:

- Benzene:

 100% sample locations below 2 mg/Kg remedial goal

- TPH (C<12)

- 100% sample locations below 250 mg/Kg remedial goal
- TPH (C>12)
 - Some free product observed
 - Some TPH (C>12) above goals

Summary

- ISS can be enhanced by the addition of sodium persulfate
 ISCO-ISS
- ISCO-ISS addresses several issues with ISS only
 - Less excess soil requiring disposal
 - Carbon footprint decreased
 - Contaminant destruction
 - Contributes to lower leachate concentrations
- ISCO-ISS still achieves common ISS goals (UCS, hydraulic conductivity, etc)
- Water content needs to be optimized along with reagents

Questions

Project Teams for Case Studies

Scott Steffl Scott.steffl@peroxychem.com

- Lars Nissen and Torben Jorgensen/COWI
- Chris Robb and Neal Durant/Geosyntec
- Anna Toft and Line Morkebjerg Fisher/Captial Region Denmark
- Kim Jensen/Arkil

Bolzano, Italy

Ladurner/Bauer

- Lorenz San Nicolo Dott/Ladurner
- Vito Schifano/30 Forensic Engineering

