REMTECH 2019

Ferrara, 18-20 settembre 2019

Analisi di rischio sanitario ambientale per siti contaminati da nanomateriali

DIATI – Politecnico di Torino

Carlo Bianco, Tiziana Tosco, Federico Mondino, Rajandrea Sethi

carlo.bianco@polito.it

DIATI POLITECNICO DI TORINO

Nanoparticelle di

origine antropica e

Introduzione

Tecniche di Contaminanti bonifica Fe⁰ nanoscopico **Carbo-Iron** naturale (es. batteri) Nano-ossidi di Fe Plume di contaminazione

(adapted from Freyria, 2007)

Colloidi naturali + contaminanti adsorbiti

Trasporto mediato

da colloidi

Introduzione

- Valutazione dei potenziali rischi associati a rilasci di nanoparticelle (NP):
 - Sorgenti diffuse

DIATI

POLITECNICO DI TORINO

- □ Stimare le concentrazioni attese di NP nei diversi comparti ambientali → basse concentrazioni
- Sorgenti puntuali (discariche, siti industriali)
 - Scala locale
 - Concentrazioni potenzialmente elevate
 - Potenziali effetti cronici sulla salute umana
 - Pochi studi, assenza di procedure standard

DIATI

POLITECNICO DI TORINO

Analisi di rischio per siti contaminati da nanomateriali

Riferimento: procedura ASTM

- Sviluppata per composti chimici, non direttamente applicabile alle NP
- Risultati: rischio per la salute umana in termini di HQ e ILCR

□ Approccio su 3 livelli, 3 step:

- Identificazione dei percorsi di migrazione
- Simulazione del trasporto dei contaminanti lungo i percorsi di migrazione identificati → modelli di trasporto (analitici, numerici) → C al POE, mappe di concentrazione
- Stima dell'impatto sui recettori potenziali → parametri di tossicità/cancerogenicità (Chronic Reference Dose, Slope Factor) → rischio al POE, mappe di rischio

Analisi di rischio per siti contaminati da nanomateriali

Riferimento: procedura ASTM

- Sviluppata per composti chimici, non direttamente applicabile alle NP
- Risultati: rischio per la salute umana in termini di HQ e ILCR

□ Aspetti chiave per le NP:

- Percorso di migrazione predominante: migrazione in falda + ingestione di acqua contaminata
- Parametri di tossicità specifici per le NP
- **------**

DIATI

POLITECNICO DI TORINO

 Meccanismi di migrazione delle NP sono diversi da quelli dei soluti -> sviluppo di strumenti modellistici analitici/numerici per la simulazione del trasporto delle NP

Ruolo della dimensione delle NP

 La dimensione influenza il trasporto delle NP in falda

DIATI

POLITECNICO DI TORINO

- Modelli di trasporto devono includere parametri "sizedependent"
- La distribuzione dimensionale cambia lungo il percorso di migrazione

From: Tosco, Sethi, Human health risk assessment for aquifer systems at nanoparticle-contaminated sites (submitted)

- La dimensione influenza la tossicità delle NP
 - Parametri di tossicità "sizedependent" non ancora disponibili, ma fondamentali

Modif. from: Asghari, Johariet al.(2012). Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna, Journal of Nanobiotechnology, 10(1), pp. 14.

Ruolo della dimensione delle NP

Riferimento: procedura ASTM

Nanoparticelle

Concentrazione in massa

 $HQ = \frac{C_{POE} \cdot E}{RfD}$

Trasporto

DIATI

POLITECNICO DI TORINO

$$NAF = \frac{S_{soil}}{C_{POE}} = K_{sw} \cdot LDF \cdot DAF$$

Rischio tossico

Rischio cancerogeno $ILCR = C_{POE} \cdot E \cdot SF$

Concentrazione in numero & PSD

$$NAF_{i} = \frac{S_{soil,i}}{C_{POE,i}} = K_{sw,i} \cdot LDF_{i} \cdot DAF_{i}$$

$$HQ = \sum_{i} \left(\frac{C_{POE,i}}{RfD_{i}} \right) \cdot E = \sum_{i} \left(\frac{m_{i} \cdot N_{w,POE,i}}{RfD_{i}} \right) \cdot E$$
$$ILCR = \sum_{i} \left(C_{POE,i} \cdot SF_{i} \right) \cdot E = \sum_{i} \left(m_{i} \cdot N_{w,POE,i} \cdot SF_{i} \right) \cdot E$$

Tosco, Sethi, Human health risk assessment for aquifer systems at nanoparticle-contaminated sites (submitted)

Adattamento procedura ASTM per le NP - trasporto in falda

DIATI POLITECNICO DI TORINO

Deposizione e rilascio di particelle

Adattamento procedura ASTM per le NP - trasporto in falda

POLITECNICO DI TORINO

Deposizione e rilascio di particelle

$$\begin{cases} \frac{\partial}{\partial t} \left(\varepsilon N_{w,i} \right) + \frac{\partial}{\partial t} \left[(1 - \varepsilon) N_{s,i} \right] + \nabla \cdot \left(u N_{w,i} \right) - \nabla \cdot \left(\varepsilon D \nabla N_{w,i} \right) = 0 \\ \frac{\partial}{\partial t} \left[(1 - \varepsilon) N_{s,i} \right] = \varepsilon k_{a,i} \psi_i N_{w,i} - k_{d,i} (1 - \varepsilon) N_{s,i} \end{cases}$$

Assunzioni:

DIATI

- Ogni classe di NP è trasportata in modo indipendente
- Le interazioni delle NP con il mezzo poroso (attachment/ detachment cinetico) possono essere approssimate con meccanismi caratteristici dei soluti

$$\frac{\partial}{\partial t} (\varepsilon RC) + \nabla \cdot (uC) - \nabla \cdot (\varepsilon D\nabla C) + \varepsilon \lambda C = 0$$

Implementazione nei tool di trasporto 3D della procedura standard Trasporto di NP approssimato con soluzioni analitiche (Livello 2)

Tosco, Sethi, Human health risk assessment for aquifer systems at nanoparticle-contaminated sites (submitted)

Analisi di rischio per siti contaminati da nanomateriali

GVI

From: Tosco, Sethi, Human health risk assessment for aquifer systems at nanoparticlecontaminated sites (submitted) 10

Spectrophotometer

NP di argento

Prove di trasporto in colonna:

DIATI

POLITECNICO DI TORINO

- 2 dimensioni: 10 nm, 65 nm
 Sabbia silicea, L=11.5 cm
 - \Box q=9.1·10⁻⁵ m/s, C=10 mg/l

□ Conc. NaCl: 10, 30, 50 mM

10 nm

65 nm

Bianco, Tosco, Mondino, Sethi (in preparation)

Peristaltic pump

column

NP di argento

Prove di trasporto in colonna:

- □ 2 dimensioni: 10 nm, 65 nm
- □ Sabbia silicea, L=11.5 cm
- □ q=9.1.10⁻⁵ m/s, C=10 mg/l

□ Conc. NaCl: 10, 30, 50 mM

10 nm

65 nm

Bianco, Tosco, Mondino, Sethi (in preparation)

NP di argento

Prove di trasporto in colonna:

DIATI

POLITECNICO DI TORINO

65 nm

□ 2 dimensioni: 10 nm, 65 nm
 □ Sabbia silicea, L=11.5 cm
 □ q=9.1.10⁻⁵ m/s, C=10 mg/l

□ Conc. NaCl: 10, 30, 50 mM

10 nm

Fitting con MNMs 2015
□ Blocking irreversibile
→ Approssimato con adsorbimento lineare
□ Attachment lineare irr.
→ Approssimato con degradazione 1° ordine

Parameter	10 nm	65 nm
Site 1		
Attachment rate k_{a1} (s ⁻¹)	$4.96 \cdot 10^{-8}$	$2.16 \cdot 10^{-7}$
Degradation rate $\lambda = \varepsilon \cdot k_{a1} (s^{-1})$	9.92·10 ⁻⁹	$4.25 \cdot 10^{-8}$
Site 2		
Attachment rate k_{a2} (s ⁻¹)	$5.79 \cdot 10^{-4}$	$1.21 \cdot 10^{-3}$
Maximum dep. conc. s _{max2} (-)	$1.61 \cdot 10^{-6}$	$5.00 \cdot 10^{-5}$
Retardation coeff. (-)	n.d.	n.d.

Bianco, Tosco, Mondino, Sethi (in preparation)

Rilascio da discarica:

DIATI

POLITECNICO DI TORINO

Rilascio di nanoparticelle di Ag:

 15 mg/l D_{10nm}, RfD=2.3·10⁻² mg/kg/d
 15 mg/l D_{65nm}, RfD=3.6·10⁻² mg/kg/d
 7.5 mg/l D_{10nm} + 7.5 mg/l D_{65nm}

Rilascio da discarica, livello 3:

- Simulazione trasporto con MNM3D:
 - Equazione non approssimata per NP
 - Soluzione numerica, livello 3
 - Trasporto dipendente dalla dimensione delle NP

DIATI

POLITECNICO DI TORINO

Conclusioni

- Per implementare una procedura di analisi di rischio per siti contaminati da nanomateriali è necessario includere caratteristiche specifiche delle NP
 - Necessario adattare/estendere i modelli esistenti → procedura ASTM per analisi di rischio RBCA (soluti)
- Aspetti chiave:

DIATI

POLITECNICO DI TORINO

- I meccanismi di trasporto delle NP sono diversi da quelli dei soluti → Attachment/detachment e trasporto "sizedependent"
 - assunzioni/sempificazioni per poter applicare i modelli esistenti
- Anche la tossicità dipende dalla dimensione delle NP

 Parametri di tossicità (RfD, SF) ad oggi sostanzialmente non disponibili

Grazie per l'attenzione

GW Adapting ASTM standard to NPs Fate models in groundwater

DIATI POLITECNICO DI TORINO

$$\frac{C_{POE}}{C_0} = \frac{1}{4} \exp\left[\left(\frac{x}{2\alpha_x}\right)\left(1 - \sqrt{1 + \frac{4\lambda\alpha_x}{v}}\right)\right] \cdot \left[erf\left(\frac{y + \frac{L_w}{2}}{2\sqrt{\alpha_y x}}\right) - erf\left(\frac{y - \frac{L_w}{2}}{2\sqrt{\alpha_y x}}\right)\right] \cdot \left[erf\left(\frac{z + \delta_{sw}}{2\sqrt{\alpha_z x}}\right) - erf\left(\frac{z - \delta_{sw}}{2\sqrt{\alpha_z x}}\right)\right]\right]$$

	Retention mechanism(s)		Simplifying assumptions	Definition of Domenico's parameters	Applicability Domenico's solution Transient Steady sta	
	1 site linear $\psi_i = 1$	Irreversible $k_{d,i} = 0$	None	$\lambda_i = \mathcal{E}k_{a,i}$ $R_i = 1$	Yes	Yes
		Reversible $k_{d,i} \neq 0$	$\frac{1}{K_{eq,i}} << \frac{x}{v}$	$\lambda_i = 0$ $R_i = 1 + \frac{k_{a,i}}{k_{d,i}}$	Yes	Yes
	1 site blocking $\psi_i = 1 - \frac{N_{s,i}}{N_{s \max,i}}$	Any (reversible or irreversible)	$\frac{1}{K_{eq,i}} << \frac{x}{v}$	$\lambda_i = 0$ R_i n.d.	No	Yes
	2 sites	Site 1: linear irrev. Site 2: linear rev.	$\frac{1}{K_{eq,i}} << \frac{x}{v}$	$\lambda_{i} = \mathcal{E} k_{a1,i}$ $R_{i} = 1 + \frac{k_{a2,i}}{k_{d2,i}}$	Yes	Yes
$\begin{cases} \frac{\partial}{\partial t} \left(\varepsilon N_{w,i} \right) + \frac{\partial}{\partial t} \left[(1 - \varepsilon) N_{s,i} \right] + \nabla \cdot \left(u N_{w,i} \right) - \gamma \\ \frac{\partial}{\partial t} \left[(1 - \varepsilon) N_{s,i} \right] + \nabla \cdot \left(u N_{w,i} \right) - \gamma \end{cases}$	$\nabla \cdot \left(\varepsilon D \nabla N_{w,i} \right) = 0$	Site 1: linear irrev. Site 2: blocking	$\frac{1}{K_{eq,i}} << \frac{x}{v}$	$\lambda_i = \mathcal{E} k_{a1,i}$ R_i n.d.	No	Yes
$\left[\frac{\partial t}{\partial t}\left[\left(1-\varepsilon\right)N_{s,i}\right]=K_{eq,i}\left(N_{s,i}-N_{s,i}\right)\right]$		J=1 linear rev. J=2 blocking	$\frac{1}{K_{eq,i}} << \frac{x}{v}$	$\lambda_i = 0$ $R_i \text{ n.d.}$	No	Yes 20

DIATI POLITECNICO DI TORINO

Silver NPs (16 nm) in natural soils

- Exp. data from Wang et al. 2014
- L=10 cm, 2 types of soils:
 - □ 100% silica sand ("0%Soil")
 - 20% silica sand + 80% silty soil ("80%Soil")
- Injection @ 0.25 ml/min, 100 mg/l
- Data fitting using MNMs 2015

 □ Linear reversible att.
 → approx. as linear sorption
 - □ Linear irreversible att.
 - \rightarrow approx. as 1° order degr.

	1	L					
S	s İ		2000				
	0.08	-		_	0%Soil	Exp. Data Model	
(1)	0.06	-			80%Soil	Exp. Data Model	
ら))	0.04	-				-	
	0.02	-			A R R R		
	0	J	++++		•		
	C)	500	00 T	10000 ime (s)) 1	500

Example 2

Parameter	0%Soil	80%Soil
Site 1		
Attachment rate k_{a1} (s ⁻¹)	$1.7 \cdot 10^{-7}$	
Degradation rate $\lambda = \varepsilon \cdot k_{a1} (s^{-1})$	$1.5 \cdot 10^{-8}$	
Site 2		
Attachment rate k_{a2} (s ⁻¹)	$3.0 \cdot 10^{-4}$	$1.0 \cdot 10^{-2}$
Detachment rate k_{d2} (s ⁻¹)	$7.0 \cdot 10^{-4}$	$5.0 \cdot 10^{-4}$
Retardation coeff. $R = 1 + \frac{k_{a2}}{k_{d2}}$ (-)	1.4	21.0

Wang, et al. (2014). Journal of Hydrology, 519, pp. 1677-1687

Tosco, Sethi, Human health risk assessment for aquifer systems at nanoparticle-contaminated sites (submitted)

DIATI

Example 2

WKim, et al. (2010). Particle and Fibre Toxicology, 7(1), pp. 20 Tosco, Sethi, Human health risk assessment for aquifer systems at nanoparticle-contaminated sites (submitted)