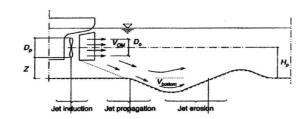


IL RUOLO DEL TRAFFICO NAVALE NELLA MOVIMENTAZIONE DEI SEDIMENTI PORTUALI: IL CASO DEL PORTO PASSEGGERI DI GENOVA

<u>A.Pedroncini</u>¹, A.Guarnieri^{1,2}, M.Vaccari³, C.Vincenzi³

(1) DHI S.r.I; (2) Present address: INGV; (3) AdSP Mar Ligure Occidentale


CONFERENZA NAZIONALE SMART PORTS – II PARTE

Mercoledì 18 Settembre 2019

RemTech Expo 2019 (18, 19, 20 Settembre) FerraraFiere www.remtechexpo.com

Le cause

- eliche di propulsione (e/o di manovra) delle navi
- eliche dei rimorchiatori

- depressione indotta dalla nave in movimento (*Bernoulli wake*)
- In zone a basso fondale: onde generate al passaggio della nave in movimento (*Kelvin ship waves*)

Le ricadute sono:

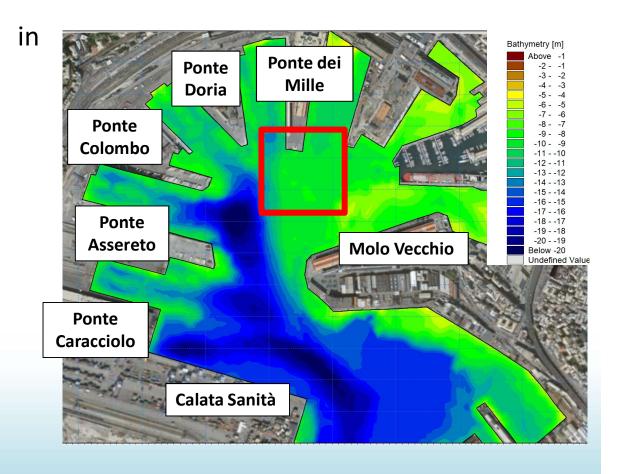
- ambientali (la concentrazione di sedimento sospeso in ambito portuale indotta dal passaggio di navi e rimorchiatori può talvolta essere paragonabile a quella associata a interventi di dragaggio);
- **gestionali**: ai fini della previsione / ottimizzazione dei livellamenti e/o dragaggi manutentivi all'interno del bacino.

LA MODELLISTICA NUMERICA PUO' VENIRE INCONTRO ALLE ESIGENZE DELLE ADSP PONENDOSI COME IMPORTANTE STRUMENTO DI PIANIFICAZIONE DEGLI INTERVENTI DI LIVELLAMENTO E DRAGAGGIO FINALIZZATI AL MANTENIMENTO OPERATIVO DEI FONDALI

Accosti traghetti

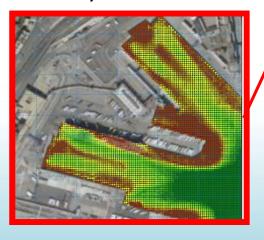
Accosti crociere

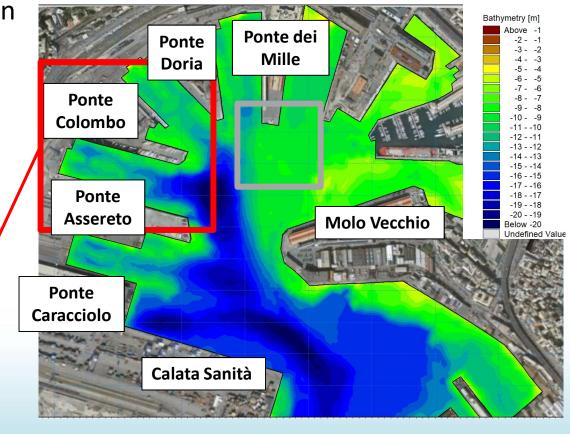
- Anno di studio 2017: 1'917 accosti
 - Circa 15% crociere
 - Circa 85 % traghetti


Attracco	Numero accosti	% accosti	Lunghezza Media Nave	Larghezza Media Nave	Pescaggio Medio Nave	
MILLE12	122	6.4%	318.41	37.86	8.33	
MILLETRE	47	2.5%	276.20	30.07	7.45	
DL	34	1.8%	290.86	32.02	7.82	
T11	97	5.1%	213.23	31.67	6.94	
T10	202	10.6%	181.88	26.44	6.46	
T9	8	0.4%	152.96	24.81	5.91	
T7	308	16.1%	214.27	26.45	6.85	
T6	291	15.2%	204.93	26.35	6.62	
T5	351	18.3%	203.93	29.57	6.95	
T3	87	4.5%	155.16	25.60	6.17	
T2	202	10.6%	185.66	27.85	6.68	
T1	164	8.6%	204.00	28.33	6.93	
TOTALE	1913	100.0%				

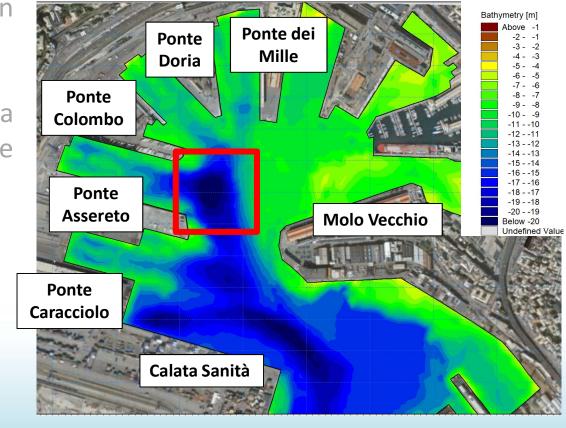
Dati forniti da Stazioni Marittime SpA

Accosti traghettiAccosti crociere


- Significativa deposizione alcune aree:
 - testata Ponte dei Mille



Significativa deposizione ir alcune aree:


testata Ponte dei Mille

 darsene (in particolare tra Ponte Assereto e Ponte Colombo)

- Significativa deposizione ir alcune aree:
 - testata Ponte dei Mille
 - darsene (in particolare tra Ponte Assereto e Ponte Colombo)
 - Necessità di livellamenti:
 - materiale ridistribuito localmente
 - materiale conferito nella fossa naturale

Modellistica integrata

Eliche delle Navi

Sorgenti di flusso

Modello idrodinamico non-idrostatico tridimensionale

Correnti tridimensionali

Modello di trasporto di sedimento

> Dinamica del sedimento

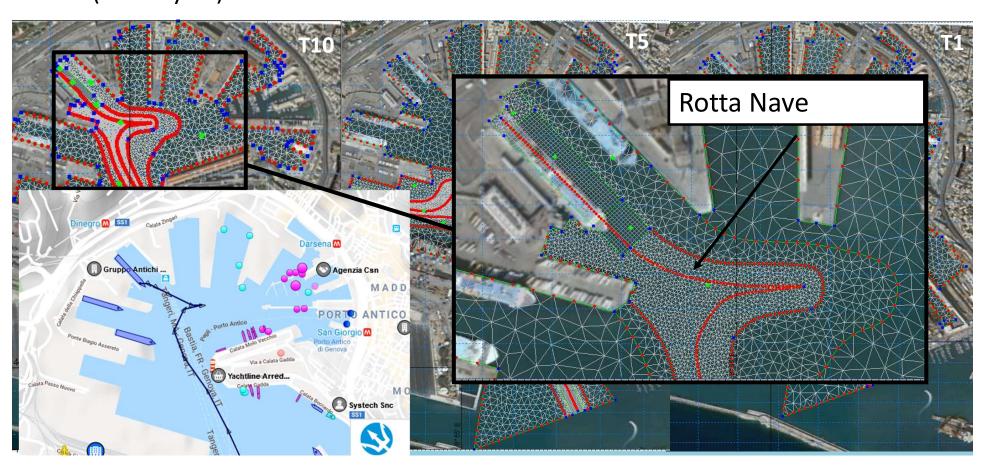
Analisi del Traffico Navale (2017)

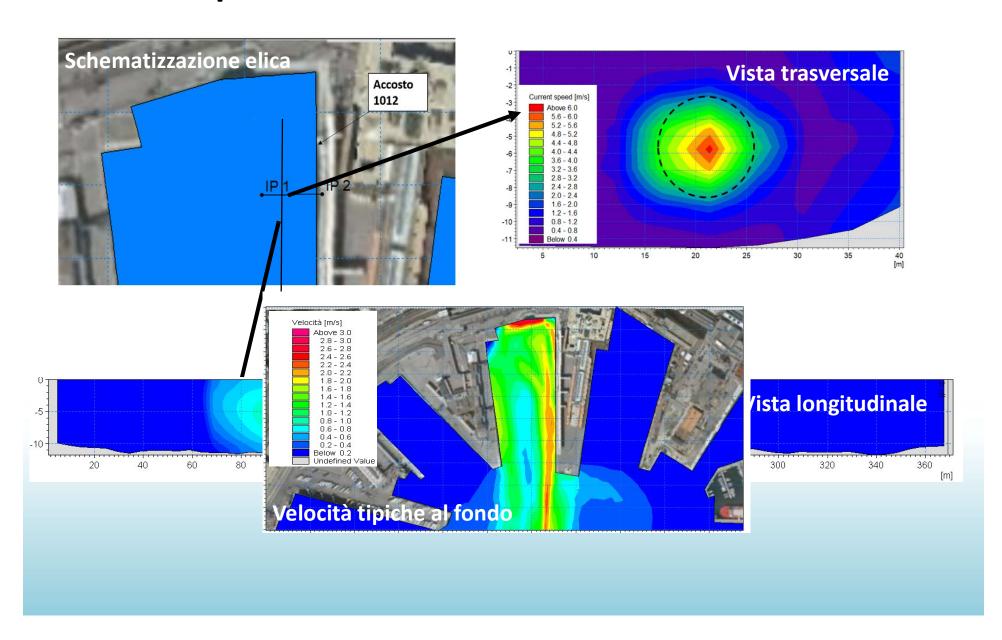
- ➤ I dati del traffico navale sono stati analizzati per ogni accosto (numero totale di accosti)
- > Per ogni banchina è stata individuata una nave rappresentativa in termini di
 - Dimensioni (larghezza e lunghezza)
 - Pescaggio
- Attraverso formule empiriche si sono stimate le dimensioni delle eliche delle navi rappresentative

Attracco	Numero accosti	% accosti	Lunghezza Media Nave	Larghezza Media Nave	Pescaggio Medio Nave	Diametro Medio Elica
MILLE12	122	6.4%	318.41	37.86	8.33	5.80
MILLETRE	47	2.5%	276.20	30.07	7.45	5.20
DL	34	1.8%	290.86	32.02	7.82	5.40
T11	97	5.1%	213.23	31.67	6.94	5.20
T10	202	10.6%	181.88	26.44	6.46	4.70
T9	8	0.4%	152.96	24.81	5.91	4.40
T7	308	16.1%	214.27	26.45	6.85	4.90
T6	291	15.2%	204.93	26.35	6.62	4.80
T5	351	18.3%	203.93	29.57	6.95	5.00
T3	87	4.5%	155.16	25.60	6.17	4.50
T2	202	10.6%	185.66	27.85	6.68	4.80
T1	164	8.6%	204.00	28.33	6.93	5.00
TOTALE	1913	100.0%				

Per la stima dei diametri delle eliche cfr. Technical University of Denmark, 2016

Bacini di evoluzione

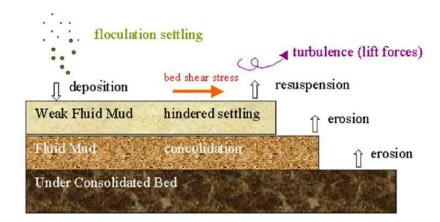

- Bacino 1: traghetti in approdo a banchine
 T3, T5, T6, T7, T9, T10, T11
- Bacino 2: traghetti in approdo alle banchine T1 e T2;
- Bacino 3: poco utilizzato, manovre di alcune navi da crociera di dimensioni non superiori a 280-300 metri (1003);
- Bacino 4: navi da crociera di maggiori dimensioni (Doria Levante e 1012)

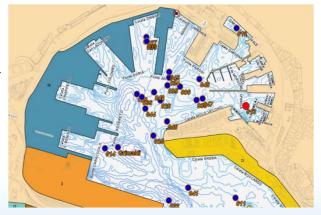

Modello Idrodinamico

MIKE 3 FM non idrostatico

- Risoluzione orizzontale: 30-5 m
- Risoluzione verticale: 1-2 m
 (10 σ layers)
- Forzanti: eliche delle navi (sorgenti mobili)
- 24 diverse griglie di calcolo

Esempio di risultati del modello idrodinamico




Modello di Trasporto di Sedimento

- MIKE 3 MT FM
- Per ciascun accosto la griglia di calcolo è la medesima del modello idrodinamico
- Definizione di:
 - 3 granulometrie di sedimento: $\Phi_{1.2.3}$ =30, 50, 100 μ m
 - 3 strati di fondo con $\tau_{critica}$ proporzionale alla profondità: $\tau_{c1.2.3}$ =0.15, 0.25, 0.50 N/m²
 - Velocità di sedimentazione calcolate tramite legge di Stokes:

$$w_s = \frac{2R^2(d_e - d_i)g}{9n}$$

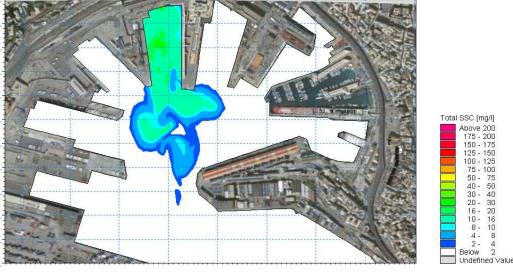
ws_{1.2.3}= 0.70, 2.20, 8.80 mm/s

MACISTE http://www.apge.macisteweb.com

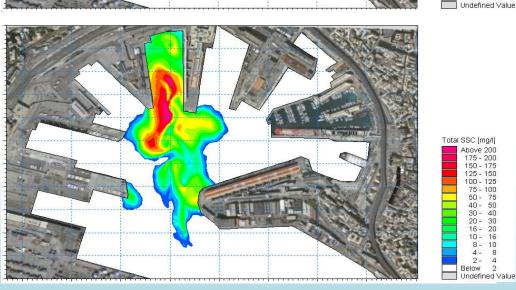
Considerazioni sugli apporti di corsi d'acqua in porto

L'apporto solido dei corsi d'acqua in Porto è risultato **trascurabile** rispetto ai volumi di sedimento movimentati dal traffico navale.

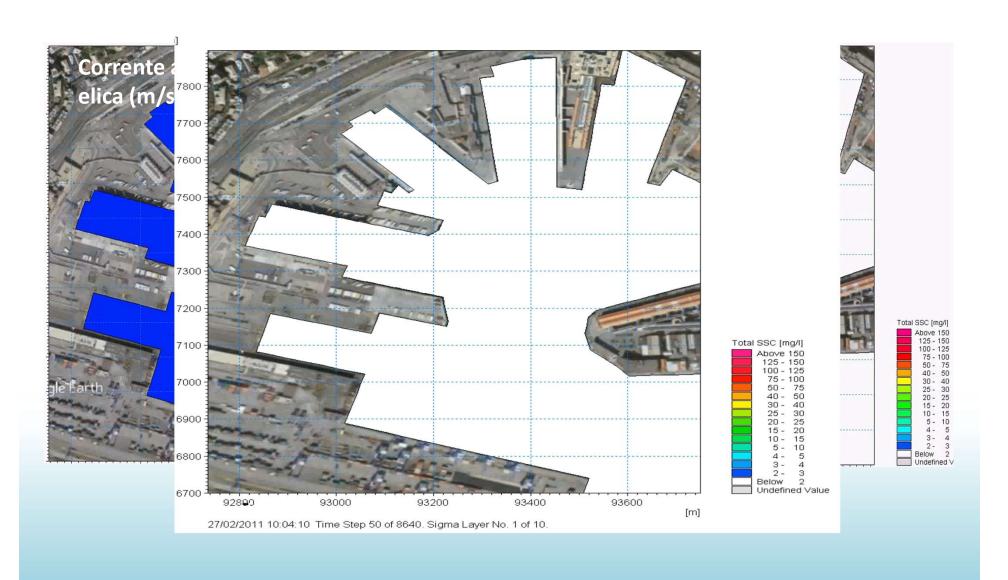
Si è infatti stimato un accumulo distribuito nella prima fascia di influenza dei corsi d'acqua dell'ordine dei mm/anno.



Stima della portata solida in base a metodi da letteratura (Ciccacci et al.,1998)

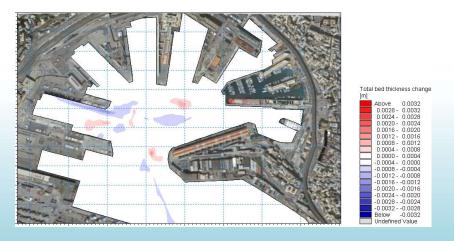

	Area [km²]	L [km]	Ga	D	Da	log(Tu)	Tu [t/km²yr]	Tu [t/yr]	Tu [m³/yr]
San Lazzaro	1.33	4	-	3.01	-	2.43	270	359	200
San Teodoro	0.54	1.06	-	1.96	-	2.09	125	68	38
Lagaccio	2.36	6.1	6	2.58	0.26	2.32	210	496	275
Sant'Ugo	0.8	1.8	-	2.25	-	2.18	150	120	67
Carbonara	1.1	3.3	-	3	-	2.43	270	297	165
Sant'Anna	0.72	2.6	-	3.61	-	2.63	430	310	172

Esempio di risultati del modello di sedimento

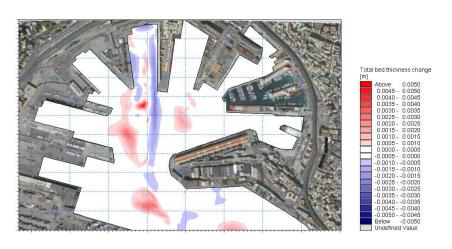

Partenza accosto 1012 Asse elica (SSC in mg/l)

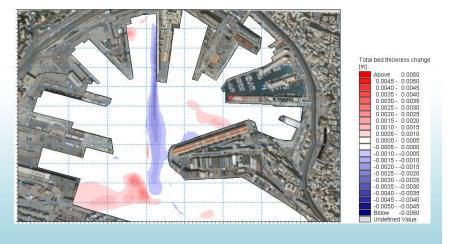
Partenza accosto 1012 Fondo (SSC in mg/l)

Esempio di risultati del modello

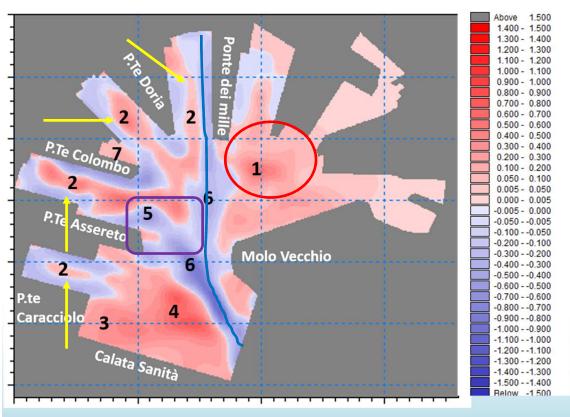


Mappe di erosione-deposizione dei singoli passaggi nave

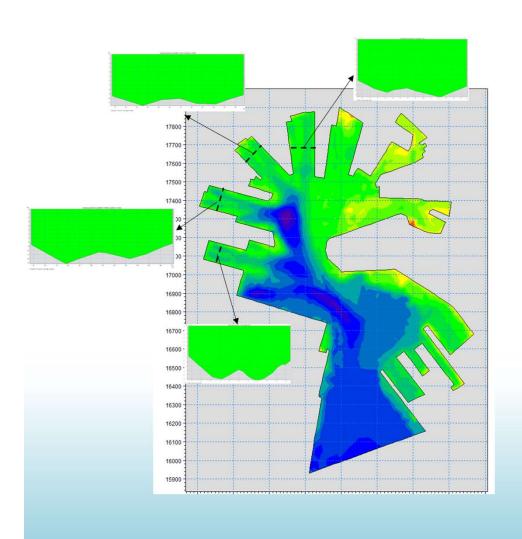

Uscita accosto T7


Ingresso accosto T7

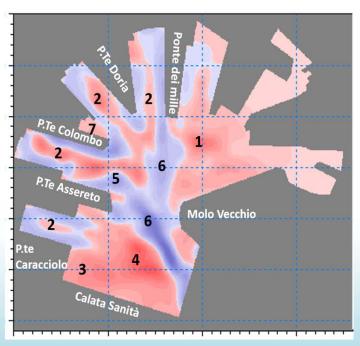
Uscita accosto 1012



Ingresso accosto 1012

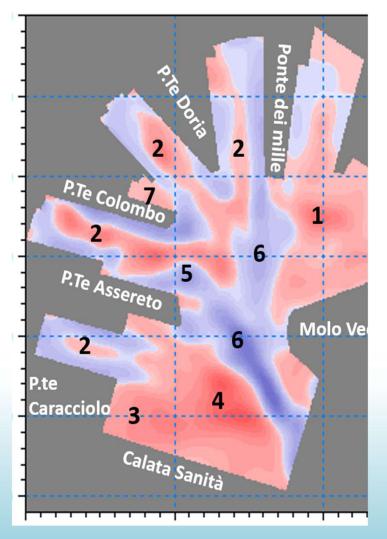

Dinamica del sedimento su base annuale

Attraverso la **sovrapposizione degli effetti** del passaggio di ogni singola nave durante l'anno di riferimento (2017) si sono potute **ricostruire le dinamiche di erosione e deposizione dei sedimenti** del fondale del bacino Passeggeri del porto di Genova:

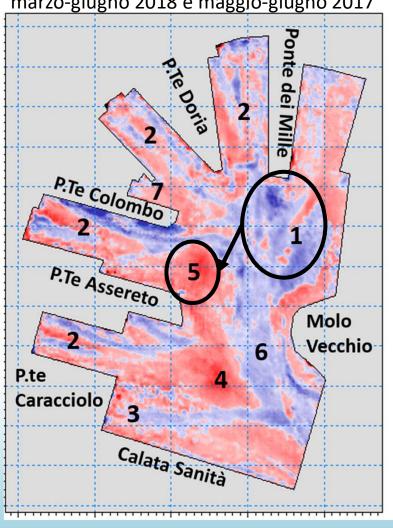


- 1 accrescimento di alcune decine di cm/anno, con punte localizzate di 40-50 cm
- 2 accrescimento generalizzato in tutte le zone centrali delle darsene
- 3 area della fossa di conferimento, in parziale erosione a causa delle evoluzioni dei traghetti
- 4 tendenziale erosione: al di sotto degli scafi / lungo le rotte principali

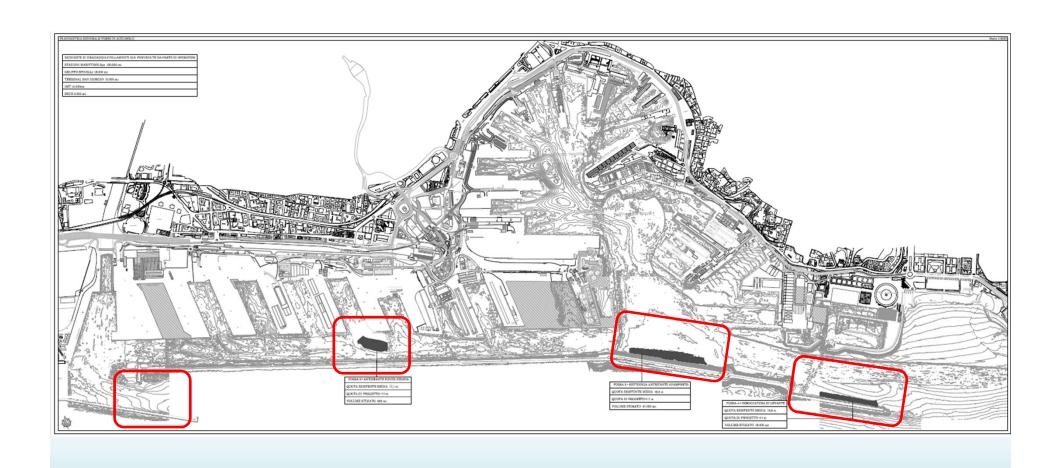
Validazione dei risultati – dinamica darsene



La topografia di fondo delle darsene mostra una chiara tendenza **depositiva al centro** ed erosiva verso le banchine, ben rappresentata qualitativamente dal modello



Validazione dei risultati – dinamica generale del sedimento


Risultato modello (2017)

Rilievi Drafinsub srl marzo-giugno 2018 e maggio-giugno 2017

Nuovi siti di conferimento

CONCLUSIONI

 la risospensione dei sedimenti indotta dal traffico navale presenta importanti ricadute gestionali ed ambientali all'interno dei porti;

 in merito ricadute gestionali, il caso studio del porto di Genova ha mostrato come la modellistica numerica possa costituire un fondamentale strumento a supporto della pianificazione degli interventi di livellamento e dragaggio manutentivo dei fondali portuali;

 in merito alle ricadute ambientali, gli effetti del traffico navale sulla risospensione dei sedimenti costituiscono una tematica di estrema attualità. Si potrebbe prevedere una specifica trattazione in una futura revisione del manuale ISPRA?

GRAZIE PER L'ATTENZIONE,

Andrea Pedroncini

DHI S.r.l.

+39 328 6341889

anp@dhigroup.com