

APPLICATION OF BIO-TRAPS® FOR SITE DIAGNOSTICS

CLAUDIO SANDRONE – BAW S.R.L.

INNOVATIVE CHARACTERIZATION TECHNOLOGIES

18 September 2019

RemTech Expo 2019 (18, 19, 20 September) FerraraFiere <u>www.remtechexpo.com</u>

27 YEARS OF INNOVATION

Bio-Trap Samplers[®]

What is a Bio-Trap[®]?

Passive sampling tool for microbes Collects **active** microorganisms Integrated sample vs. "snapshot" Use with any of the molecular tools

Bio-Trap Samplers[®]

How do Bio-Traps work?

- 3-4 mm in diameter
- 25% Nomex and 75% PAC
- 74% porosity
- 600 m² of surface area/g
- Heat sterilized at 270°C
- Colonized by native microbes

How are they deployed?

- Purge monitoring well
- Suspend from top of casing
- Deploy within the screened interval
 - At depth of interest
- If water fluctuates, suspend from a float

Bio-Trap Samplers®

In Situ Microcosms

What treatment should be selected?

Each ISM unit represents a treatment option MNA BioStim BioAug

Each unit contains a set of passive samplers

Deployment for 60-90 days

Recovered and shipped to the lab for analysis

In Situ Microcosms

CHEMISTRY

GEOCHEMISTRY

MICROBIOLOGY

In Situ Microcosms

Electron Donors

- Vegetable oil
- Molasses
- HRC
- EOS
- Lactate
- And more

Electron Acceptors

- Oxygen (PermeOx, ORC)
- Nitrate
- Iron
- Sulfate

Stable Isotope Compounds (¹³C)

- Benzene
- Toluene
- p-Xylene
- MTBE
- TBA
- Naphthalene
- Chlorobenzene
- And more

Will addition of sulfate as an electron acceptor stimulate anaerobic BTEX biodegradation?

ISM deployed in two monitoring wells

Each assembly consisted of an MNA unit and a BioStim unit amended with **EAS[™]**

Following a 60 day in well deployment period, ISM units were recovered for analysis

Case Study

Case Study

Anaerobic BTEX – MNA vs BioStim Units

Stable Isotope Probing

99% ¹³C

Specially produced "heavy" compounds -Natural compounds are 99% ¹²C -Same characteristic as original -Behave same as the natural compound

Tracer

Used as a "tracer" to increase our understanding of the contaminant fate

Stable Isotope Probing

Monitoring Well

¹³C compound is loaded onto the beads at the lab

Bio-Traps are deployed into the monitoring well for 30-60 days

Native microbes colonize the beads within the trap

Bio-Sep Bead

Stable Isotope Probing

Bio-Sep Bead

Some of the native microbes can utilize the ¹³C compound on the beads

¹³C is incorporated into new cells growing within the beads or into Co₂ being produced

CASE STUDY #1

Industrial Site in NJ

Impacted by finishing products (paints and coatings)

Leaking UST

p-Xylene

- Bio-Traps loaded with ¹³C p-xylene
- Deployed for 30 days in locations with varied concentration
 - 100, 10, and 1 pmm
- M2E2 was a control with no oxygen added
- Analyzed for SIP

Bio-Trap Results – Relative Rate

Sample	Pre (mg/bd)	Post (mg/bd)	% Loss				
Control – MNA	(8,						
M2E2 – 10 ppm	1.40	1.31	6 %				
<u>Biostimulation – Oxygen</u>							
M1E1 – 1 ppm	1.40	0.84	40 %				
MW-7 – 10 ppm	1.40	1.12	20 %				
EX-1 – 100 ppm	1.40	1.17	16 %				

Control www.nicobe.com **Biostimulation** – 3.900 1 ppm **MNA** Oxygen 3.400 10 ppm 2.900 (%2.400 1.900 1.400 100 ppm 10 ppm 900 -20 to -30 del 400 -100 Background MW2E2 **M1E1 MW-7** EX1

Bio-Trap Results - Respiration

Bio-Trap Results - Metabolism

¹³C/¹²C of Biomarkers

Biomass (cells/bead)

Del Values

		13C				
Sample	Total	Enriched	%	Average	Minimum	Maximum
<u>Control</u>	- MNA					
M2E2	3.27E+05	2.15E+03	1%	+48	-50	+547
<u>Biostimulation – Oxygen</u>						
M1E1	2.88E+07	2.14E+06	7%	+6,288	+1,009	+10,764
MW-7	2.00E+07	6.24E+05	3 %	+1,624	+348	+3,878
EX1	6.77E+07	2.17E+06	3%	+1,739	+619	+3,521

Is xylene being degraded under the current conditions?

-Yes see results of the control trap in M2E2

- •To what extent would biostimulation with oxygen effect biodegradation of xylene?
 - -Significant stimulation
 - •Total biomass increased (large increases in PLFA with O₂)
 - Higher levels of ¹³C enrichment observed in PLFA
 Strong evidence of microbial respiration
 - •Relative rates faster in the wells receiving oxygen

MI DATABASE

Context. Driving innovation.

الله في فقط في الم

We use Google as a resource to learn more about a subject.

Use the MI database as a resource to add context to your data.

Over 40,000 samples from sites around the world

THANKS FOR THE ATTENTION,

Dr. Claudio Sandrone

BAW s.r.l. – Saluzzo (CN)

Ph: 334-5715645 - 0175/86642

e-mail: claudiosandrone@baw-env.it