

Provect-EBR® Integrated Biogeochemical / Electrochemical Method for Remediation of Contaminated Groundwater

Elie Elgressy, Gil Elgressy - E. Elgressy, Israel

Raphi Mandelbaum, Gal Mandelbaum – LDD, Israel

Claudio Sandrone, Andrea Campi - BAW / Provectus, Italy claudiosandrone@BAW-env.it

Jim Mueller – Provectus, USA jim.mueller@provectusenv.com

REMTECH Europe Groundwater Remediation Session 7 Ferrara, Italy September 19, 2019

REDOX CONTROLLED REMEDIAL TECHNOLOGIES

Presentation Outline

Problem Statement

- Summary of ISCO Technologies
- Why Do We Need Another?

♦ What is Provect-"EBR[®]"?

- What is Provect-EBR?
- How does it Work / Mode of Action?
- Remote System Control and Real-Time Monitoring
- Applications to Date

Case Studies

- CHCs: Confidential military site
- B/MTBE: Neve Tzedik Site (Israeli Water Authority and Ben-Gurion Univ.)
- Future R&D
- Summary and Conclusions

elec rode

ISCO = Breaking Chemical Bonds

P

- Oxidant must be able to accept electrons
 - Capacity = Equivalent weight (MW / No. electrons)
- Ultimate end point is mineralization
 - Partial oxidation is common

Bond Type	Volts (eV)
Carbon-Carbon (single) Long chain hydrocarbons PAHs, DRO, GRO	2.5
Carbon-Carbon (one and a half) Aromatic Type - BTEX and PCP	2.0
Carbon-Carbon (double) HVOCs, PCE, TCE, DCE, VC	1.5
Carbon-Hydrogen (Alkanes)	1.0

Summary of ISCO Technologies

Î	Fluorine (F ₂)
5	Hydroxyl radio
stronger oxidize	Persulfate rad
	Ferrate (Fe ⁺⁶)
	Ozone (O ₃)
	Persulfate (S ₂ 0
	Hydrogon por

Oxidation Potentials	Volts		• Tre
Fluorine (F ₂)	2.87		• Sho • Diff
Hydroxyl radical (OH•)	2.80		Pers • Tre
Persulfate radical (SO ₄ \bullet)	2.60	×	• Sul radio
Ferrate (Fe ⁺⁶)	2.20		Prov
Ozone (O ₃)	2.08	R	Gei Tre
Persulfate (S ₂ O ₈ ⁻²)	2.01		• Ext • Avc
Hydrogen peroxide (H ₂ O ₂)	1.78		<u>Ozor</u> • Tre
Permanganate (MnO ₄ -)	1.68	R	• Sho • Lim
Chlorine (Cl ₂)	1.49		Pern
https://sites.google.com/site/ecpreparation/ferrate-v	<i>r</i> i		•Trea

Fenton's

- ats wide range of contaminants
- ort subsurface lifetime
- ficult to apply in reactive soils

ulfate

- ats wide range of contaminants
- Ifate radical forms slower than the hydroxyl cal, allowing a larger radius of influence

vect-OX

- nerates Ferrate (Fe IV, V, VI possible)
- ats wide range of contaminants
- ended in situ lifetime w/ continual production
- oids Rebound

٦e

- ats wide range of contaminants
- ort subsurface lifetime
- nited use in saturated zone

nanganate –

- Treats limited range of contaminants
- Partial oxidation of TPHs, etc
- Long subsurface lifetime
- Potential effects on hydrogeology

Reactive Oxidant Species (ROS) Higher oxidation potential = stronger the oxidizer

Why We Need A New ISCO Technology

- Longevity: Conventional ISCO amendments and means of generating ROS are limited by distribution, kinetics, and short environmental halflives (10E⁻⁹ to 10E⁻⁶ seconds) = need to be continuously generated / applied.
- ISCO PRBs: PRB applications using existing ISCO (candles, KPS, etc) are limited
- Sustained, In Situ Production of ROS could yield effective PRBs, especially for:
 - COIs not conducive to ISCR/ZVI such as 1,4-dioxane, MTBE/TBA, perchlorate, (PFAS) plumes.
 - Deep aquifers
 - Challenging lithologies (fractured rock, etc)

ISCO PRB Can Save Money

APPENDIX A. Comparative Analysis of Various Options for an Example PRB @ 50 m long x 5 m deep (4 to 9 m bgs) x 3 m wide.

Technology	Process	Benefits	Detriments	Materials	Example Construction
					O&M&M costs (USD)
Provect-EBR	In situ ISCO	Longevity 5 to >7 years;	Limited application outside	8 EBR wells	8-well EBR system, installed = \$125K
	(Fenton's)	Treats COIs without	Israel;	spaced 5.5 m	8x, 4-inch diam wells = \$24K
	generator	intermediates;	Mostly used to date for MTBE	apart	Engineering/startup = \$30K
		Remote monitoring control	and refined petroleum		Annual OMM = \$30/ɣr
		panel and software included	products		TOTAL = \$209

Provect-"EBR®" ISCO PRB

In Situ **ISCO Generator** to continuously produce Fenton's type ROS yields an effective PRB technology for:

- Challenging lithologies (deep aquifers, clayey soils, fractured rock)
- Situations where sorption/sequestration is not considered an effective response
- Alternatives to hydraulic containment (long term O&M&M)

Example Contaminant Concentration (mg/L)

What is Provect-"EBR®"

- \bullet H₂O₂ production
- ♦ Fe²⁺ release
- \bullet O₂ production

Computerized controller

Computerized control panels for remote system / adjustment and realtime performance monitoring

Copyright Provectus

US and EPC Patents

2 1 MAY 2019

European Patent Office 80296 MUNICH

Fax: +49 E9 2399 4465

Tel: +49 89 2399 0

Formaities Officer

Name: Comte, Catherine Tel: +49 89 2399 - 8598

GERMANY

EPC 15 885 303.7-1014

15 885 307.7 - 1014	17763P/EP		16.05.2019
Application No.	Bel.		Date
		ц., с	
			1. A
· · · ·			
ROYAUME-UNI			
Millfield Lane			
3 Ebor House			· · · · ·
Harrison IP Limited			+31 (0)70 340 45 00

Communication under Rule 71(3) EPC

1. Intention to grant

L

Furopäische

European Patent O^{sc}ice

Office europée des brevets

You are informed that the examining division intends to grant a European patent on the basis of the above application, with the text and drawings and the related bibliographic data as indicated below.

A copy of the relevant documents is enclosed.

1.1 In the text for the Contracting States:

AL AT BE BC CH CY CZ DE DK EE ES FI FR CB CR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(12) United States Patent Elgressy

- (54) BREAKDOWN OF FUEL COMPONENTS AND SOLVENTS IN GROUNDWATER AND CONTAMINATED SOIL
- (71) Applicant: Elie Elgressy, Netanya (IL)
- (72) Inventor: Elie Elgressy, Netanya (IL)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days, days.
- (21) Appl. No.: 15/559,053
- (22) PCT Filed: Dec. 3, 2015
- (86) PCT No.: PCT/IL2015/051175
 § 371 (c)(1),
 (2) Date: Sep. 17, 2017
- (87) PCT Pub. No.: WO2016/147168
 PCT Pub. Date: Sep. 22, 2016
- (65) Prior Publication Data US 2018/0071800 A1 Mar. 15, 2018

(45) Date of Patent: May 22, 2018

References Cited

(10) Patent No.:

(56)

U.S. PATENT DOCUMENTS

5,037,240 A 8/1991 Sherman 5,861,090 A 1/1999 Clarke et al. (Continued)

FOREIGN PATENT DOCUMENTS

GB 1399576 A1 7/1975 WO WO 2012/142435 A2 10/2012

OTHER PUBLICATIONS

Kraft, A., Doped Diamond: A Compact Review on a New, Versatile Electrode Material, Int. J. Electrochem. Sci., May 2, 2007, Issue 5, No. 2, pp. 355-385.

(Continued)

Primary Examiner — Benjamin F Fiorello (74) Attorney, Agent, or Firm — Ted Whitlock

(57) ABSTRACT

A system and method for remediation of polluted sites,

Provectus is the Exclusive Provider in North America and Italy

US 9.975.156 B2

How Does EBR Work?

The EBR Well Generates Reactive Oxidant Species (ROS)

in a manner similar to other Electro-Fenton's (EF) type systems (Nazari *et al.*, 2019; Rosales, *et.al,* 2012; Sires *et al.*, 2014; Yuan et al., 2013):

Production of O_2 : electrolytic reduction of water on a catalytic electrode yields molecular oxygen, O_2

Production of H_2O_2: two-electron reduction of oxygen on a cathode surface generates H_2O_2

Release of Iron: H_2O_2 interacts with ferrous iron (Fe²⁺) released from a third cell to yield hydroperoxyl (HO₂·)/superoxide (O₂·) and V Proxyl radicals (OH·), and likely ferrates F

 $O_{2} + 2H^{+} + 2e^{-} \rightarrow H_{2}O_{2}$ $Fe^{2+} + H_{2}O_{2} \rightarrow Fe^{3+} + HO^{\bullet} + OH^{-}$ $Fe^{3+} + H_{2}O_{2} \rightarrow Fe^{2+} + HO^{\bullet}_{2} + H^{+}$ $Fe^{3+} + HO^{\bullet}_{2} \rightarrow Fe^{2+} + O_{2} + H^{+}$ $Fe^{3+} + HO^{\bullet}_{2} \rightarrow Fe^{2+} + O_{2} + H^{+}$ $Fe^{3+} + HO^{\bullet}_{2} \rightarrow Fe^{2+} + O_{2} + H^{+}$

How Does EBR Differ From EF?

Fe^{2+/3+} Nanoclusters: <u>At neutral pH</u>EBR uniquely generates "low" Fermi Level (highly oxidized) FeII/III oxyhydroxide nanoclusters (2 nM) as the sacrificial Fe source corrodes within the well (Ai *et al.*, 2013; Elgressy 2019).

Subsurface distribution of Fe nanoclusters throughout aquifer is driven by:

- Equilibration of differences in Fermi level energies self-generated self-propagated
 Redox Fronts and Electro-R
- Induced redox fronts
- Electro-redox current densities
- Electroosmosis
- Electrophoresis
- Dynamic coupling between EBR wells

<u>https://www.provectusenvironmental.com/p-ebr/P-EBR_SIMULATION_VIDEO_M-720.mp4</u>

How Does EBR Differ From EF?

Fe^{2+/3+} Nanoclusters: A critical and unique feature of the EBR is use of geophysical mechanisms to enhance subsurface distribution of low Fermi level Fe nanoclusters and propagate catalysis *in situ* to continuously generate reactive oxidants throughout its effective ROI.

Electrochemical Potential of an e- is the difference in potential between the oxidized and reduced species (Peljo *et al.,* 2017; Scanlon *et al.,* 2015)

Fermi Level is a thermodynamic "value" to define the electrochemical potential of an electron in a redox couple in solution

At +850mV ("low" Fermi Level electrochemical potential) electrons are essentially freely transferred from Fe³⁺ to Fe²⁺

Scheme 3 Redox equilibria for metallic NPs in solution showing the capabilities of metallic NPs to be (A) charged and (B) discharged upon Fermi level equilibration with an excess of a single dominant redox couple in solution.

In Situ Generation of ROS

As Fe (hydro)oxides within the aquifer ROI equilibrate their Fermi level electrochemical potentials they continuously catalyze *in situ* generation of new ROS from dissolved molecular O_2 via two kinds of molecular oxygen activation pathways (Ai *et al.*, 2013):

- On the Fe core via rapid two-electron-reduction molecular oxygen activation (may eventually be blocked by the formation of iron oxide coatings), then
- Surface bound ferrous ions catalyze the singleelectron-reduction molecular oxygen activation pathway

Summary of EBR Reactions

- Generation of H₂O₂
- Release of Fe²⁺
- H_2O_2 interacts Fe²⁺ to yield ROS $HO_2 \cdot /O_2 \cdot$ and OH · (ferrate?)
- Release of O₂ and low Fermi Level Fe²⁺/Fe³⁺ nanoclusters
- Self-propagation throughout ROI (less confined by lithology)
- Continuous in situ production of ROS catalyzed by O₂ activation from equilibration of Fermi levels of Fe
 - Transition from ISCO to bioremediation (using oxygen and iron as electron acceptors) and RNA using abiotic transformations.
 - Process controlled remotely with real-time monitoring

Where has it been Used?

- ♦ In 2017, Israel had 27 gas stations undergoing active remediation
- ♦ EBR technology was employed at 9 (33%) + 2 chlorinated solvent sites
- Today, 7 sites are in clean-closure monitoring after 1 year of operation
- EBR is ISO-certified and approved by the Israeli Water Authority and is now the preferred technology for BTEX/MTBE sites.
- No PRB Applications. No USA applications.

Copyright Provectus

Case Study - Solvent Site

• DTW 19.5 m bgs

- Sandy aquifer impacts
 - PCE max. 257 ug/L
 - ♦ TCE max. 25,146 ug/L
 - ♦ DCE max. 47 ug/L

W-C3

CVOC Removal (60 days)

CVOC (ug/L)	Time (Days)	Well 6 (10 m up)	Well 6a EBR Well	Well 6b (5 m down)	Well 7 (20 m down)
PCE	0	8.7	257	<2	<2
	30	2.4	<2	<2	<2
	60	<2	5	<2	<2
TCE	0	752	25,146	74	24
	30	201	<2	6	14
	60	37	15	4	<2
DCE	0	14	47	<1	<1
	30	2.6	<1	<1	<1
	60	1.6	8	<1	<1

Single EBR Well + Control Panel and remote monitoring < \$45K installed

- ROI observed 20 m downgradient within 30 to 60 days.
- >99% CVOC removal within 30 days

Case Study – Neve Tzedik Site

Operating Gasoline Station

- Groundwater at 7 m bgs
- Sandy aquifer with si cl lenses
- ♦ MTBE >50 mg/L; TPH >100 mg/L
- ♦ 242 m² impacted area

5 EBR/SVE Systems (2017)
Monitoring wells

Soil / Groundwater TPH (18 mo)

Copyright Provectus

Soil / Groundwater MTBE (18 mo)

Future R&D / Continued Studies

Validate ROI and Effective Propagation Time, Vertically and Horizontally (RSC, USEPA, USACE, DOW, AECOM, GEOSYNTEC, TETRATECH, others)

- ORP / Measurements (indirect)
- COI Reductions (indirect)
- Fe2+/Fe3+ measurements: Particle size (BEM) and mineralogy (XRD patterns, TEM micrographs, XPS spectra and high-resolution scan); possible using variations of Bradley and Tratnyek (2019).
- Self-Potential Method (direct): passive geophysical analysis based on the natural occurrence of electrical fields resulting from the existence of source currents in the conductive subsurface (Fachin *et al.*, 2012)
- Electrical Resistivity Tomography (direct): measures variations in electrical conductivity associated with changes in pore water ionic strength or water phase saturation.
- <u>Lab-fabricated oxygen microprobes/sensors</u> (direct): validate the distribution of ROS.
- Simple and Predictive Models: facilitate PRB design and implementation

Provectus Environmental Products

- Complimentary Site Evaluation
- Complimentary review of quarterly field performance data with every project
- Laboratory Treatability Studies
- Turn-Key, Pay-for-Performance Contracting Options
- Project Specific Guarantees and Warranties

- USA (Illinois, New Jersey, Ohio, Pennsylvania)
- Australia, Brazil, China, Colombia, Germany, Israel, Italy, Spain and Taiwan

THANKS FOR THE ATTENTION,

Dr. Jim Mueller

Provectus Environmental Products, Inc - USA

Ph (815) 650-2230

e-mail jim.mueller@provectusenv.com

GRAZIE PER L'ATTENZIONE,

Mr. Claudio Sandrone

BAW S.r.l / Provectus

Ph () 650-2230

e-mail claudiosandrone@baw-env.it

ENVIRONMENTAL ENGINEERING

Learn More About Provectus and EBR

